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Abstract

In this paper, a simple and generic implementation approach is presented, with the aim
of transforming a deterministic ocean model (like NEMO) into a probabilistic model.
With this approach, several kinds of stochastic parameterizations are implemented to
simulate the non-deterministic effect of unresolved processes, unresolved scales, un-5

resolved diversity. The method is illustrated with three applications, showing that un-
certainties can produce a major effect in the circulation model, in the ecosystem model,
and in the sea ice model. These examples show that uncertainties can produce an im-
portant effect in the simulations, strongly modifying the dynamical behaviour of these
three components of ocean systems.10

1 Introduction

The first requirement of an ocean model is the definition of the system that the model is
going to represent. As illustrated in Fig. 1, this usually amounts to defining an appropri-
ate separation between the system (A) and the environment (B). For instance, in this
study, we always use a stand-alone ocean model, which means that the atmosphere is15

not included in the system (A), but in the environment (B). A key property of any ocean
model is also the separation between resolved scales (in A) and unresolved scales
(in B), defining the spectral window that the model is going to represent. In a similar
way, marine ecosystems are too complex to be entirely included in A. They can only
be represented by a limited number of variables Ci , i = 1, . . .,n, providing a synthetic20

picture of the ecosystem, while the remaining biogeochemical diversity is included in B.
Even if the union of the two systems A and B could be assumed deterministic, this is

in general not true for system A alone. The future evolution of A does not only depend
on its own dynamics and initial condition, but also on the interactions betweenA and B.
This means that the only two ways of obtaining a deterministic model for A are either25

to assume that the evolution of B is known (as usually done for the atmosphere in
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stand-alone ocean models) or to assume that the effect of B can be parameterized as
a function of what happens in A (as usually done for unresolved scales and unresolved
diversity). It is however important to recognize that this is always an approximation and
that B is often an important source of uncertainty in the predictions made for A.

To obtain a reliable predictive model for A (in the sense given in Brier, 1950; Toth5

et al., 2003), a consistent description of this uncertainty should be embedded in the
model itself. This transforms the deterministic model into a probabilistic model, which
fully characterizes the quantity of information that the model contains about A. Two
important advantages of this probabilistic approach are (i) to allow objective statistical
comparison between model and observations (by providing sufficient conditions to in-10

validate the model, see for instance Candille et al., 2005), and (ii) to provide a weak
model constraint to data assimilation problems (by including a coherent description of
model uncertainty). The objective of the modeller also changes: instead of designing
a deterministic model as close as possible to observations, a probabilistic model that
is both reliable (not yet invalidated by observations) and as informative as possible15

about A must be designed.
In practice, for a complex system, it is usually impossible to compute explicitly the

probability distribution describing the forecast. In general, only a limited size sample
of the distribution can be obtained through an ensemble of model simulations, as rou-
tinely done in any ensemble data assimilation system (see Evensen, 1994). Ensemble20

simulations are produced by randomly sampling the various kinds of uncertainty (in the
dynamical laws, in the forcing, in the parameters, in the initial conditions, . . . ) in their
respective probability distribution (Monte Carlo simulations). To allow objective compar-
ison with observations or to correctly deal with model uncertainties in data assimilation
problems, non-deterministic models are thus needed in many ocean applications. The25

most direct approach to introduce an appropriate level of randomness in ocean models
is to use stochastic processes mimicking the effect that unresolved processes (in B)
produce on the system (A).
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Stochastic parameterizations, explicitly simulating model uncertainty were first ap-
plied to ensemble weather forecasting by Buizza and coauthors Buizza et al. (1999)
about 15 years ago. Since then, stochastic parameterizations have emerged as
a quickly developing area of research in meteorology Palmer et al. (2005). In oceanog-
raphy, however, most state of the art dynamical models are still deterministic. Up to5

now, the development of stochastic dynamical equations has been mainly focusing on
stochastic parameterization of Reynolds stresses in idealized ocean modelling systems
(see Frederiksen et al., 2012a; Kitsios et al., 2013 for a review). Only a few exploratory
studies have attempted to explicitly simulate uncertainties in realistic dynamical ocean
models: this has been done for the ocean circulation Brankart (2013), for the ocean10

ecosystem Arhonditsis et al. (2008), and for the sea ice dynamics Juricke et al. (2013).
These preliminary studies nonetheless already show that uncertainties can play a ma-
jor role in dominant dynamical behaviours of marine systems.

In line with these studies, the objective of this paper is to propose a generic imple-
mentation of these stochastic parameterizations, and to investigate several applications15

in which the randomness of the ocean system may be an important issue. This is syn-
thetically implemented in the ocean model (see Sect. 2) by adding one addtional mod-
ule providing appropriate random processes to any non-deterministic component of the
system (circulation, ecosystem, sea ice). The method is designed to be simple enough
to allow a quick check of the effect of uncertainties in the system, and flexible enough20

to apply to various sources of uncertainty (atmosphere, unresolved scales, unresolved
diversity, . . . ). Three applications are then illustrated in Sect. 3 showing that the ex-
plicit simulation of uncertainty can be important in a wide variety of ocean systems,
by stimulating important non-deterministic dynamical behaviours. The first application
(circulation model) is the same application as in Brankart (2013), but this previous pa-25

per only presented the average effect of the stochastic parameterization, whereas the
focus is here on the randomness that is produced in the large scale ocean circulation.
The second application (ecosystem model) is a first attempt to apply stochastic param-
eterizations and to explicitly simulate randomness in a basin-scale ocean ecosystem

618

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/615/2015/gmdd-8-615-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/615/2015/gmdd-8-615-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
8, 615–643, 2015

Simulation of
uncertainty in NEMO

J.-M. Brankart et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

model. The third application (sea ice model) is an attempt to reproduce the parameter-
ization developed in Juricke et al. (2013) in our ocean model using the generic imple-
mentation presented in Sect. 2, and to illustrate the randomness that is generated in
the interannual variability of sea ice thickness.

2 Stochastic formulation of NEMO5

The ocean model used in this study is NEMO (Nucleus for a European Model of
the Ocean), as described in Madec et al. (2008). NEMO is the European modelling
framework for oceanographic research, operational oceanography, seasonal forecast
and climate studies. This model system embeds various model components (see
http://www.nemo-ocean.eu/), including a circulation model (OPA, Océan PArallélisé),10

ecosystem models, with various levels of complexity (e.g. LOBSTER, LOCEAN Sim-
ulation Tool for Ecosystem and Resources), and a sea-ice model (LIM, Louvain-la-
Neuve Ice model). The purpose of this section is to shortly describe the three kinds of
stochastic parameterizations that have been implemented in NEMO, and to show that,
from a technical point of view, they can be unified in one single new module in NEMO,15

feeding the various sources of randomness in the model. (More technical details about
this module can be found in the Appendix.)

2.1 Order n autoregressive processes

The starting point of our implementation of stochastic parameterizations in NEMO is to
observe that many existing parameterizations are based on autoregressive processes,20

which are used as a basic source of randomness to transform a deterministic model
into a probabilistic model. A generic approach is thus to add one single new module
in NEMO, generating processes with appropriate statistics to simulate each kind of
uncertainty in the model (see examples in Sect. 3).
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In practice, at every model grid point, independent Gaussian autoregressive pro-
cesses ξ(i ), i = 1, . . .,m are first generated using the same basic equation:

ξ(i )
k+1 = a

(i )ξ(i )
k +b(i )w (i ) +c(i ) (1)

where k is the index of the model timestep; and a(i ), b(i ), c(i ) are parameters defining
the mean (µ(i )) SD (σ(i )) and correlation timescale (τ(i )) of each process:5

– for order 1 processes, w (i ) is a Gaussian white noise, with zero mean and SD
equal to 1, and the parameters a(i ), b(i ), c(i ) are given by:
a(i ) =ϕ

b(i ) = σ(i )√1−ϕ2 with ϕ = exp
(
−1/τ(i )

)
c(i ) = µ(i ) (1−ϕ)

(2)

– for order n > 1 processes, w (i ) is an order n−1 autoregressive process, with zero
mean, SD equal to σ(i ); correlation timescale equal to τ(i ); and the parameters10

a(i ), b(i ), c(i ) are given by:
a(i ) =ϕ

b(i ) = n−1
2(4n−3)

√
1−ϕ2 with ϕ = exp

(
−1/τ(i )

)
c(i ) = µ(i ) (1−ϕ)

(3)

In this way, higher order processes can be easily generated recursively using the same
piece of code implementing Eq. (1), and using succesively processes from order 0
to n−1 as w (i ). The parameters in Eq. (3) are computed so that this recursive applica-15

tion of Eq. (1) leads to processes with the required SD and correlation timescale, with
the additional condition that the n−1 first derivatives of the autocorrelation function are
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equal to zero at t = 0, so that the resulting processes become smoother and smoother
as n is increased. AR(2) processes (with other specifications) have already been ap-
plied in several studies Berloff (2005); Wilks (2005), and will be used in this paper in
the sea ice model application (see Sect. 3.3).

Second, a spatial dependence between the processes can easily be introduced by5

applying a spatial filter to the ξ(i ). This can be done either by applying a simple filter
window on the ξ(i ) 2-D or 3-D matrices: ξ̃(i ) = F [ξ(i )], or by solving an elliptic equation:
L[ξ̃(i )] = ξ(i ). In both cases, the filtering operator could be made flow dependent, or
more generally, the filter characteristics could be modified according to anything that
is resolved by the ocean model (in system A in Fig. 1). Technically, this only requires10

that the description of the ocean model is made available to the filtering routines. This
filtering option (using a simple Laplacian filter) is used in the sea ice application (see
Sect. 3.3).

Third, the marginal distribution of the stochastic processes can also be easily mod-
ified by applying a nonlinear change of variable (anamorphosis transformation) to15

the ξ(i ) before using them in the model ξ̂(i ) = T [ξ(i )]. This idea is similar to what is
done in ensemble data assimilation methods to transform variables with non-Gaussian
marginal distribution into Gaussian variables Bertino et al. (2003); Béal et al. (2010);
Brankart et al. (2012). For instance, this method can be very useful if the description
of uncertainties in the model requires positive random numbers. In this case, anamor-20

phosis transformation can be applied to transform the Gaussian ξ(i ) into positive ξ̂(i )

with lognormal or gamma distribution. This anamorphosis option (using a gamma dis-
tribution) is used in the sea ice application (see Sect. 3.3).

Overall, this method provides quite a simple and generic way of generating a wide
class of stochastic processes. However, this also means that new model parameters25

are needed to specify each of these stochastic processes. As in any parameterization
of lacking physics, a very important issue is then to tune these new parameters using
either first principles, model simulations, or real-world observations. This key problem
of assessing the parameters involved in Eq. (1) cannot be addressed in the present
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paper, and we can only provide a very brief overview of the nature of the problem.
Many existing studies (e.g. Frederiksen et al., 2012b; Achatz et al., 2013; Grooms and
Majda, 2013) already addressed the problem of choosing the coefficients of the ARn
processes to simulate the Reynolds stresses in atmospheric and oceanic flows. Con-
siderable progress has been made for this important problem, but not all unresolved5

processes have received so much attention, and it is often still difficult to figure out how
to derive the parameters of the ARn processes.

In the three applications described in Sect. 3 for instance, there is still no theoret-
ical guidelines to tune the parameters, and this can only be done by comparing the
results to higher resolution models or to observations. This is why no quantitative as-10

sessment of the parameters will be attempted in this paper. Nevertheless, our point of
view is that, for these three applications, the problem would have been considerably
more difficult with a deterministic parameterization of unresolved processes, since no
deterministic simulation could fit the observations exactly. By explicitly simulating un-
certainties, we can describe the actual random behaviour of the system (see Fig. 1);15

ensemble simulations can be objectively compared to observations (using probabilis-
tic methods, see Brier, 1950; Toth et al., 2003; Candille et al., 2005); and the model
(including the stochastic parameters) can be rejected as soon as the ensemble is not
reliable. Unknown parameters could also be tuned by solving inverse problems, until
ensemble reliability is achieved.20

2.2 Stochastic perturbed parameterized tendency

A first way of explicitly simulating uncertainties in meteorological weather forecast was
introduced about 15 years ago in the ECMWF ensemble forecasting system Buizza
et al. (1999). Their basic idea was to separate the model tendency (M) into non-
parameterized (NP ) and parameterized (P ) tendencies (M =NP +P ). The non-25

parameterized tendency (NP ) contains all processes that are fully resolved by the
model, and can be assumed free of uncertainties. The parameterized tendency (P )
contains the parameterization of the effect of unresolved processes (system B in
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Fig. 1), which is essentially uncertain. The stochastic parameterization is then intro-
duced by multiplying the parameterized tendency (P ) by a random noise, explicitly
simulating the uncertainties in P . The basic motivation was to produce ensemble fore-
casts with enhanced dispersion to improve their reliability (i.e. their consistency with
available observations). This technique is still used today in the ECMWF operational5

forecasting system.
This kind of stochastic parameterization is also meaningful in ocean models, and

it can be directly applied in the model using the generic implementation described in
Sect. 2.1. This can be done by using one or several of the ξ(i ) given by Eq. (1) as
mulitplicative noise for the various terms of the parameterized tendency:10

dx
dt

=NP (x,u,p,t)+
m∑
i=1

P (i )(x,u,p,t) ξ(i )(t) with
m∑
i=1

P (i ) = P (4)

where t is time; x, the model state vector; u, the model forcing; and p, the vector of
model parameters. In this case, the mean of the ξ(i ) must be set to 1, assuming that
the model parameterized tendencies are unbiased, and the other statistical parameters
(SD, time and space correlation structure, marginal distribution) are free to be adjusted15

to any reasonable assumption about the uncertainties. In ocean models, this stochas-
tic parameterization can be applied to any parameterization of unresolved processes
(see Fig. 1), as for instance the diffusion operators, simulating the effect of unresolved
scales, the air-sea turbulent fluxes, the parameterization of the various functions of the
ecosystem dynamics, usually describing the unresolved biologic diversity, . . . An exam-20

ple of this SPPT parameterization is given in the ecosystem application (see Sect. 3.2).

2.3 Stochastic parameterization of unresolved fluctuations

Another way of explicitly simulating uncertainties in ocean models is to directly repre-
sent the effect of unresolved scales in the model equations using stochastic processes.
Unresolved scales can indeed produce a large scale effect as a result of the nonlinear-25
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ity of the model equations. Important nonlinear terms in ocean model are for instance:
the advection term, the seawater equation of state, the functions describing the be-
haviour of the ecosystem, . . . Concerning the advection term, the effect of unresolved
scales is usually parameterized as an additional diffusion, while for the other terms it
is most often ignored. However, in many cases, a direct way of simulating this effect5

would be to generate an ensemble of random fluctuations δx(i ) with the same statis-
tical properties as the unresolved scales, and to average the model operator over the
ensemble:

dx
dt

=
1
m

m∑
i=1

M
(
x+δx(i ),u,p,t

)
with

m∑
i=1

δx(i ) = 0 (5)

This corresponds to an averaging of the model equations over a set of fluctuations δx(i )
10

representing the unresolved scales. The zero mean fluctuations δx(i ) can produce an
average effect (corresponding to an interaction between A and B in Fig. 1) as soon
as the model M is nonlinear. In this parameterization, the number of independent
fluctuations (m) and the statistics for each of them should be chosen to simulate the
properties of the unresolved scales as accurately as possible.15

Obviously, the main difficulty with this method is to generate fluctuations δx(i ) with
the right statistics to faithfully correspond to the statistics of unresolved processes. As
a first very simple approach, this can be done using one or several of the ξ(i ) given
by Eq. (1), either by assuming that the statistics of δx(i ) can be directly approximated
by the simple statistical structure of autoregressive processes ξ(i ), or by assuming that20

δx(i ) can be computed as a joint function of the model state x and the autoregressive
processes ξ(i ). For example, if the fluctuations can be assumed proportional to the
large scale gradient ∇x of the state vector, the fluctuations δx(i ) could be computed as
the scalar product of ∇x with random walks ξ(i ):

δx(i ) = ξ(i ) · ∇x (6)25
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This particular case corresponds to the stochastic parameterization proposed in
Brankart (2013) to simulate the effect of unresolved scales in the computation of the
horizontal density gradient because of the nonlinearity of the seawater equation of
state. Examples of this parameterization are given in the circulation model application
(Sect. 3.1) and in the ecosystem application (Sect. 3.2).5

2.4 Stochastic parameterization of unresolved diversity

Another general source of uncertainty in ocean models is the presence of various dy-
namical behaviours, which are not all resolved by the model. For instance, marine
ecosystems always contain a wide diversity of species, which cannot be described
separately by the model, and which must be aggregated in a limited number of state10

variables. In a similar way, sea ice can display a wide variety of dynamical behaviours,
which cannot always be resolved by ocean models. As unresolved scales, unresolved
diversity generates uncertainties in the evolution of the system, which can be explicitly
simulated using a similar approach:

dx
dt

=
1
m

m∑
i=1

M
(
x,u,p+δp(i ),t

)
(7)15

where δp(i ) are random parameter fluctuations representing the various possible dy-
namical behaviours that are simultaneously present in the system.

The application of this method requires a statistical description of the uncertainties
in the parameters; and again, as a first approach, this can be parameterized using
one or several of the ξ(i ) given by Eq. (1). As a particular case, this method includes20

the stochastic parameterization proposed in Juricke et al. (2013) to explicitly simulate
uncertainties in ice strength in a finite element ocean model. It was thus very easy
to apply the same scheme in the ice component of NEMO, as an example of this
parameterization (see Sect. 3.3).
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3 Impact on model simulations

The purpose of this section is now to illustrate the impact of the stochastic parameteri-
zations presented in Sect. 2 in various components of NEMO: in the ocean circulation
component in Sect. 3.1, in the ocean ecosystem in Sect. 3.2, and in the sea ice dynam-
ics in Sect. 3.3. The focus of the discussion will be on the probabilistic behaviour of the5

system (A) as a result of the uncertainties (the interaction with B in Fig. 1). All applica-
tions have been performed using the same generic code implementing the stochastic
formulation of NEMO described in Sect. 2.

3.1 Stochastic circulation model

As a result of the nonlinearity of the seawater equation of state, unresolved potential10

temperature (T ) and salinity (S) fluctuations (in system B) have a direct impact on the
large scale density gradient (in system A), and thus in the horizontal pressure gardient
through the thermal wind equation. As shown in Brankart (2013), this effect can be
simulated using the scheme described in Sect. 2.3, by applying Eq. (5) to the equation
of state:15

ρ stoch(T ,S) =
1
m

m∑
i=1

ρ
(
T +δT (i ),S +δS (i )

)
with

m∑
i=1

δT (i ) = 0,
m∑
i=1

δS (i ) = 0 (8)

where δT (i ) and δS (i ) explicitly simulate the unresolved fluctuations of potential tem-
perature and salinity. These fluctuations are generated using random walks following
Eq. (6), with parameters for the ξ(i ) given in Table 1 (i.e. the same parameterization as
in Brankart, 2013). This stochastic parameterization simulates the exchange of poten-20

tial energy between resolved and unresolved scales, which results from the nonlinear-
ity of the equation of state (see Brankart, 2013 for more details). As for the Reynolds
stresses, this should be strongly constrained by physical principles, but we will stick
here to the parameters proposed in Brankart (2013), which were derived from a com-
parison with higher resolution reanalysis data.25

626

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/615/2015/gmdd-8-615-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/615/2015/gmdd-8-615-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
8, 615–643, 2015

Simulation of
uncertainty in NEMO

J.-M. Brankart et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

It is interesting to note (as a complement to what is explained in Brankart, 2013) that
there is a close similarity between this stochastic correction of the large scale density
and the semi-prognostic method proposed in Greatbatch et al. (2004); Greatbatch and
Zhai (2006). In both cases indeed, the only correction applied to the model occurs in
the thermal wind equation through a direct correction of density, while the conservation5

equation driving the evolution of potential temperature, salinity and horizontal velocity
are all kept unchanged. We can thus be certain that the stochastic parameterization
displays the same nice conservation properties as the semi-prognostic method, in par-
ticular there is no direct modification of the T , S properties of the water masses, no
enhanced diapycnal mixing and thus no compromise with the fact that the ocean in-10

terior should primarily flow close to the neutral tangent plane. The modification of the
thermohaline structure of the ocean is only produced indirectly through a modification
of the main currents.

The first impact of the stochastic T and S fluctuations is indeed on the mean circu-
lation simulated by the model. This mean effect in a low resolution global configuration15

of NEMO (the ORCA2 configuration, see Madec and Imbard, 1996 for more detail) has
been described in detail in Brankart (2013). In summary, the density correction is im-
portant (and quite systematically negative because of the convexity of the equation of
state) along the main fronts separating the subtropical and subpolar gyres. The mean
pathway of the mean current is thus modified, significantly reducing the biases of the20

deterministic model. In particular, the Gulf Stream pathway no longer overshoots and
the structure of the Northwest corner becomes more realistic. The impact on the mean
circulation is similar to what can be obtained with the semi-prognostic-method Great-
batch et al. (2004), in which the density correction is diagnosed from observations,
whereas the stochastic model behaves as an autonomous dynamical system.25

The second effect of the stochastic T and S fluctuations is to generate random vari-
ability in the system. Because of the nonlinearity of the equation of state, the small
scales constantly modify the structure of the large scale density, and thus the pathway
of the large scale circulation. There is a constant flux of information from system B
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(small scales) to system A (large scales), which is represented in the stochastic model
by the random processes ξ(i ), and which is totally absent in the deterministic model.
This effect is illustrated in Fig. 2, which displays the pattern of sea surface height (SSH)
in several key regions of the Atlantic: the Norhwest corner (top panels), the Brazil–
Malvinas Confluence Zone (middle panels), and the Agulhas Current retroflection (bot-5

tom panels). In the non-stochastic simulation, in absence of interannual variability of
the atmospheric forcing (as in Brankart, 2013), the interannual variability is extremely
weak (see Penduff et al., 2011 for a precise quantification): this is why only one typical
year is shown, since all years would all appear identical. In the stochastic simulation
however, not only the mean SSH pattern is modified (as shown in Brankart, 2013),10

the interannual variability is also strongly enhanced, and thus becomes more compati-
ble with the intrinsic large-scale SSH variability that is obtained from higher resolution
model or from satellite altimetric measurements (as diagnosed in Penduff et al., 2011).
This intrinsic variability (produced in absence of any interannual variability in the at-
mospheric forcing) is a good proxy to the dispersion that would be observed in a truly15

probabilistic ensemble forecast. In a high resolution model, this dispersion in the large-
scale behaviour can only result from the interaction with the mesoscale (as explained
in Penduff et al., 2011). In the low resolution ORCA2 configuration, this unpredictable
and intrinsically variable behaviour of the large scales is here (at least partially) restored
by a stochastic parameterization of the effect of the mesoscale (which is in system B)20

on the large scale density. It must be mentioned however that such a small size sam-
ple is not sufficient to provide an accurate quantitative information on the magnitude of
this effect. To give more precise quantitative results, further tuning and validation of the
stochastic parameterization are required.

To further explore the effect of these uncertainties, we are currently applying the25

same stochastic parameterization to a 1/4◦ resolution model configuration of the North
Atlantic (NATL025). The results (obtained with the parameters listed in Table 1) indi-
cate that the stochastic parameterization tends to produce a mean effect on the Gulf
Stream pathway, and to decorrelate the mesoscale patterns produced in different mem-
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bers of the ensemble. The first questions that we would like to address with this kind
of simulation are whether it is possible to better tune the stochastic parameterization
using reference data, whether the ensemble dispersion can explain a substantial part
of the misfit with altimetric observations, and thus whether this kind of ensemble can
be used to assimilate SSH measurements in NATL025. And then, as a longer term5

perspective, maybe the stochastic processes ξ(i ) can be used as a control vector for
data assimilation, which would therefore display the same nice conservation properties
as the semi-prognostic method Greatbatch et al. (2004).

3.2 Stochastic ecosystem model

There are many sources of uncertainty in marine ecosystem models. To simplify the10

discussion, only two classes of uncertainty will be considered here: uncertainties re-
sulting from unresolved biologic diversity and uncertainties resulting from unresolved
scales in biogeochemical tracers (see Fig. 1). On the one hand, to simulate uncer-
tainties resulting from unresolved diversity, we will use the SPPT scheme described in
Sect. 2.2 and multiply the “source minus sink” terms (SMSk) of the ecosystem model15

by a multiplicative noise:

SMS stoch
k (Cl ) = SMS ref

k (Cl )× ξ(k) (9)

where Cl are the biogeochemical tracer concentrations, and ξ(k) are autoregressive
processes obtained from Eq. (1), with parameters given in Table 1. To simulate unre-
solved diversity, the scheme described in Sect. 2.4 would probably have been more20

natural, but in view of the large number of parameters in the ecosystem model, the
SPPT scheme is much easier to implement as a first approach. On the other hand, to
simulate uncertainties resulting from unresolved scales, we will use the scheme de-
scribed in Sect. 2.3, by applying Eq. (5) to the SMS terms:

SMS stoch
k (Cl ) =

1
m

m∑
i=1

SMSref
k

(
Cl +δC

(i )
l

)
with

m∑
i=1

δC(i )
l = 0 (10)25
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where δC(i )
l explicitly simulate the unresolved fluctuations of biogeochemical tracer

concentrations. These fluctuations are generated using random walks following Eq. (6),
with parameters for the ξ(i ) given in Table 1. (Since little is known about uncertainties
in the ecosystem model, we just used here reasonable values for the parameters.)

As a first approach, the impact of these two stochastic parameterizations has been5

studied in a low resolution global ocean model, based on the ORCA2 configuration
coupled with the LOBSTER ecosystem model (using exactly the same model settings
as in the previous section). The ecosystem model (see Lévy et al., 2005 for more de-
tails) is a simple model including only 6 compartments (Ck , k = 1, . . .,6): phytoplankton,
zooplankton, nitrate, ammonium, dissolved organic matter, and detritus. The behaviour10

of this model is here illustrated in Fig. 3 by the surface phytoplankton in the North
Atlantic for 15 June (in the second year of simulation). As compared to the determin-
istic simulation (top left panel), the stochastic simulation with the SPPT scheme (top
right panel) does not modify very strongly the general behaviour of the system (de-
spite the 50 % SD multiplicative noise), but substantially increase the patchiness of the15

surface phytoplankton concentration. This suggests the conjecture that uncertainties
(in particular unresolved diversity) may partly explain the patchiness of satellite ocean
colour images. Conversely, the stochastic simulation of unresolved scales (bottom left
panel) does not increase patchiness, but can significantly affect the local behaviour of
the system, sometimes increasing or decreasing the production (whether the second20

derivative of the SMS term is positive or negative). At first sight, these two sources
of uncertainty are thus insufficient to explain the considerable misfit between model
simulation and ocean colour data.

As an additional experiment, the two stochastic parameterizations have then been
used together (bottom right panel), by simply generating a sufficient number of au-25

toregressive processes (corresponding to the two columns together in Table 1) to feed
the two schemes. This result shows that there is a strong interaction between the two
schemes, leading to a deep modification of the general behaviour of the system, and
to enhanced patchiness as compared to the SPPT scheme alone. In our view, this di-
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rectly leads to the idea that uncertainties may be an important ingredient to undertsand
the dynamical behaviours of marine ecosystems, and to make the model distribution
consistent with ocean colour observations (in magnitude and pattern). It must be noted
however that these experiments only represent a first attempt to explicitly simulate un-
certainties in the ecosystem component of NEMO, and that further studies are needed5

before any meaningful quantitative result can be obtained.

3.3 Stochastic sea ice model

One of the main difficulties of sea ice models is to correctly simulate the wide diversity
of ice dynamical behaviours. Among ice characteristics, the most sensitive parameter
is certainly the ice strength P ?. In simple ocean models (as in LIM2 in NEMO), P ?10

is assumed constant, whereas, in more complex models (as in LIM3 in NEMO), the
variations of P ? can be explicitly resolved as a function of the various types of ice
simultaneously present at every model grid point. The impact of uncertainties in P ? has
already been studied in the work of Juricke and coauthors Juricke et al. (2013) using
a finite element ocean model (FESOM), coupled to a simple sea ice model similar to15

LIM2. The purpose of this section is to reproduce their parameterization in NEMO/LIM2
using the generic technical approach described in Sect. 2. This can be done very easily,
almost without any additional implementation effort, using the scheme described by
Eq. (7) with m = 1 and

P ? +δP ? = P ? × ξ (11)20

where ξ is one of the autoregressive processes given by Eq. (1), with parameters given
in Table 1. The parameters are chosen to be close to the stochastic parameterization
in Juricke et al. (2013). Specificities are the use of order 2 instead of order 1 autore-
gressive processes, and the use of a gamma marginal distribution instead of another
kind of positive distribution in Juricke et al. (2013).25

This stochastic parameterization has been applied to a low resolution global ocean
configuration of NEMO, again without interannual variability in the atmospheric forcing
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(using the same model settings as in Brankart, 2013). The behaviour of the model is
here illustrated in Fig. 4 by the ice thickness in the Arctic at the end of March (when
the ice extension is close to its maximum). As compared to the deterministic simulation
(top left panel), the first impact of the stochastic parameterization is to systematically
increase ice thicknesses, especially in the regions of old ice (North of Greenland and5

Western Canada), and to slightly decrease the ice extension. These two mean effects
are very similar to what is described in Juricke et al. (2013), and cannot be reproduced
by a simple uniform modification of P ?.

On the other hand, the stochastic fluctuations of P ? also generate random variabil-
ity in the system. As for SSH in Sect. 3.1, the interannual variability of ice thickness10

pattern is extremely weak in ORCA2 without interannual variability of the atmospheric
forcing (which is why only one typical year is shown in Fig. 4). In the stochastic simula-
tion however, not only the mean ice thickness pattern is modified (as for SSH in Fig. 2),
the interannual variability (which is again a good proxy to ensemble dispersion as ex-
plained in Sect. 3.1) is also strongly enhanced. What is expected from these results is15

thus that the explicit simulation of uncertainties can provide us an adequate basis for
probabilistic comparision with sea ice observations, and help us producing reliable en-
semble forecasts for sea ice data assimilation problems. Consequently, it might also be
that this stochastic approach represents a worthwhile alternative to explicit resolution
of sea ice diversity (as in LIM3).20

4 Conclusions

In this paper, a simple and generic implementation approach has been presented, with
the purpose of transforming a deterministic ocean model (like NEMO) into a probabilis-
tic model. With this method, it is possible to easily implement various kinds of stochas-
tic parameterization mimicking the non-deterministic effect of unresolved processes,25

unresolved scales, unresolved diversity, . . . It has been shown indeed that ocean sys-
tems can often display a random behaviour, which needs to be explicitly represented
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in ocean models. Ensemble simulations are then required to sample all possible be-
haviours of the system. Getting a correct overview of all dynamical possibilities is nec-
essary to objectively compare models to observations, and to use the model as a weak
constraint in ocean data assimilation problems.

This technique has been applied to several applications, showing that randomness5

is ubiquitous in ocean systems: in the large-scale circulation (e.g. because of the effect
of unresolved scales through the nonlinear equation of state), in the ecosystem model,
(e.g. because of the effect of unresolved scales and unresolved biogeochemical diver-
sity), and in the sea ice dynamics. (e.g. because of the unresolved diversity of sea ice
characteristics). In each of these applications, uncertainty can be viewed as an essen-10

tial dynamical characteristic of the system, which can modify our understanding of the
ocean behaviour. As for any complex system, constructing ocean models using opti-
mal (but imperfect) components can often be worse (less robust) than using unreliable
components dealing explicitly with their respective inaccuracy. The ocean is like a dice
rolling on the table of a casino: we are unable to grasp all subtleties of its movements,15

and we can only sample from all possible outcomes of the game using probabilistic
models.

Appendix A: Implementation issues

All examples of stochastic parammeterizations described in this paper have been per-
formed with the same generic tool that we have implemented in NEMO. The purpose20

of this appendix is to describe this tool, and to show that it could be easily adapted to
work in any other modelling system.

The computer code is made of one single FORTRAN module, with 3 public routines
to be called by the model (in our case, NEMO):

– The first routine (sto_par, see Algorithm 1) is a direct implementation of Eq. (1),25

applied at each model grid point (in 2-D or 3-D), and called at each model time
step (k) to update every autoregressive process (i = 1, . . .,m). This routine also
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includes a filtering operator, applied to w (i ), to introduce a spatial correlation be-
tween the stochastic processes.

– The second routine (sto_par_init, see Algorithm 2) is an initialization routine
mainly dedicated to the computation of parameters a(i ),b(i ),c(i ) for each autore-
gressive process, as a function of the statistical properties required by the model5

user (mean, SD, time correlation, order of the process, . . . ). This routine also in-
cludes the initialization (seeding) of the random number generator.

– The third routine (sto_rst_write) writes a “restart file” with the current value of
all autoregressive processes to allow restarting a simulation from where it has
been interrupted. This file also contains the current state of the random number10

generator. In case of a restart, this file is then read by the initialization routine
(sto_par_init), so that the simulation can continue exactly as if it was not
interrupted.

Algorithm 1 sto_par

for all (map i = 1, . . .,m of autoregressive processes) do
Save map from previous time step: ξ−← ξi
if (process order is equal to 1) then

Draw new map of random numbers w from N (0,1): ξi ← w
Apply spatial filtering operator Fi to ξi : ξi ←Fi [ξi ]
Apply precomputed factor fi to keep SD equal to 1: ξi ← fi × ξi

else
Use previous process (one order lower) instead of white noise: ξi ← ξi−1

end if
Multiply by parameter bi and add parameter ci : ξi ← bi × ξi +ci
Update map of autoregressive processes: ξi ← ai × ξ− + ξi

end for
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Algorithm 2 sto_par_init

Initialize number of maps of autoregressive processes to 0: m← 0
for all (stochastic parameterization k = 1, . . .,p) do

Set mk , the number of maps of autoregressive processes required for this pa-
rameterization
Increase m by mk times the process order ok : m←m+mk ×ok

end for
for all (map i = 1, . . .,m of autoregressive processes) do

Set order of autoregressive processes
Set mean (µi ), standard deviation (σi ) and correlation timescale (τi ) of autore-
gressive processes
Compute parameters ai ,bi ,ci as a function of µi ,σi ,τi
Define filtering operator Fi
Compute factor fi as a function of Fi

end for
Initialize seeds for random number generator
for all (map i = 1, . . .,m of autoregressive processes) do

Draw new map of random numbers w from N (0,1): ξi ← w
Apply spatial filtering operator Fi to ξi : ξi ←Fi [ξi ]
Apply precomputed factor fi to keep standard deviation equal to 1: ξi ← fi ×ξi
Initialize autoregressive processes to µ+σ ×w: ξi ← µ+σξi

end for
Read maps of autoregressive processes and seeds for the random number gener-
ator form restart file, if any
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This module has been used to produce the 3 examples of stochastic parameteriza-
tion given in the paper, with the parameters given in Table 1. The same set of basic
routines has thus been applied to simulate the random walks of the stochastic equation
of state in Sect. 3.1, the random perturbation of the ecosystem model in Sect. 3.2, and
the random sea ice dynamics in Sect. 3.3. Moreover, as can be seen from Algorithms 15

and 2, these parameterizations can easily be applied alltogether or separately.
In summary, what is proposed here is a very simple algorithmic solution to trans-

form a deterministic model into a probabilistic model. It is easy to adapt to many kinds
of model, and generic enough to deal with many other sources of uncertainty. This
is obviously not intended to be the final theoretical or technical solution for simulat-10

ing uncertainties, The algorithms and framework proposed in this study only provide
a first-guess solution, which is simple enough to make a first quick evaluation of the
effect of a given source of uncertainty, and flexible enough to easily evolve as a better
understanding of the problem is progressively obtained.
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Table 1. Parameters of autoregressive processes for all applications described in this paper.
The number of processes is the number of autoregressive processes used in each stochastic
parameterization (sometimes multiplied by 3 to produce one process for each component of the
random walks). The mean, SD and correlation timescale are the parameters µ(i ), σ(i ) and τ(i )

used in Eqs. (2) and (3). For the stochastic parameterization of the equation of state (circulation
model), the SD are multiplied by sin φ for ORCA2, and by sin 2φ for NATL025, where φ is
latitude.

Circulation model Ecosystem Sea ice
unresolved unresolved unresolved

ORCA2 NATL025 diversity scalesF diversity

Number of processes 6×3 1×3 6 1×3 1
Order of processes 1 1 1 1 2
Mean value 0 0 1 0 0

SD
σxy = 4.2
σz = 1

σxy = 1.4
σz = 0.7

0.5
σxy = 3
σz = 1

1.

Correlation timescale 12 days 10 days 3 days 12 days 30 days
Spatial filtering no no no no Laplacian
Anamorphosis no no no no gamma
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Figure 1. Schematic of the separation between resolved and unresolved processes (systems
A and B). Even if A∪B can be assumed deterministic, system A alone is not deterministic in
general, because of the interactions with system B.
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Figure 2. Sample of sea surface height patterns (in meters), illustrating the intrinsic interannual
variability generated by the stochastic parameterization of the equation of state in a low resolu-
tion global ocean model configuration (ORCA2): northwest corner of the North Atlantic drift (top
panels), Brazil–Malvinas Confluence Zone (middle panels), and Agulhas Current retroflection
(bottom panels).
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Figure 3. Surface phytoplankton concentration (in mmol-N m−3) for 15 June as obtained with
various stochastic parameterizations of uncertainties in the ecosystem model: no stochastic
parameterization (top left panel), stochastic simulation of unresolved diversity (top right panel),
stochastic simulation of unresolved scales (bottom left panel), stochastic simulation of unre-
solved diversity and unresolved scales (bottom right panel).
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Figure 4. Sample of ice thickness patterns (in meters) in winter (end of March), illustrating the
intrinsic interannual variability generated by the stochastic parameterization of ice strength in
a low resolution global ocean model (ORCA2).
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